State-dependent asset allocation using neural networks
نویسندگان
چکیده
Changes in market conditions present challenges for investors as they cause performance to deviate from the ranges predicted by long-term averages of means and covariances. The aim conditional asset allocation strategies is overcome this issue adjusting portfolio allocations hedge changes investment opportunity set. This paper proposes a new approach that based on machine learning; it analyzes historical states returns identifies optimal choice period when observations become available. In approach, we directly relate state variables weights, rather than firstly modeling return distribution subsequently estimating choice. method captures nonlinearity among (predicting) weights without assuming any particular other data, fitting model with fixed number predicting data parameters. empirical results stock bond indices show proposed generates more efficient outcome compared traditional methods robust using different objective functions across sample periods.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Timing and Diversification: A State-Dependent Asset Allocation Approach
The influence of changing economic environment leads the distribution of stock market returns to be time-varying. This requires a dynamic adjustment of the asset allocation in order to enjoy a conditionally optimal investment. In this context, we examine the improvement of the portfolio performance by simulating portfolio strategies that are conditioned on the Markov regime switching behavior o...
متن کاملCost functions and model combination for VaR-based asset allocation using neural networks
We introduce an asset-allocation framework based on the active control of the value-at-risk of the portfolio. Within this framework, we compare two paradigms for making the allocation using neural networks. The first one uses the network to make a forecast of asset behavior, in conjunction with a traditional mean-variance allocator for constructing the portfolio. The second paradigm uses the ne...
متن کاملAllocation with Neural Networks
Internet traffic has doubled almost every year since 1997, a growth rate set to continue for some time.1 To maintain quality of service, some heavily trafficked Web sites use multiple servers, which share information through a shared file system or data space. The Andrews file system (AFS) and distributed file system (DFS), for example, can facilitate this sharing. In other sites, each server m...
متن کاملAsset Allocation
This review article describes recent literature on asset allocation, covering both static and dynamic models. The article focuses on the bond–stock decision and on the implications of return predictability. In the static setting, investors are assumed to be Bayesian, and the role of various prior beliefs and specifications of the likelihood are explored. In the dynamic setting, recursive utilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Finance
سال: 2021
ISSN: ['1351-847X', '1466-4364']
DOI: https://doi.org/10.1080/1351847x.2021.1960404